quarta-feira, 28 de agosto de 2013

Concurso para Físico Médico - Radiodiagnóstico - Maranhão

Caríssimos, ainda que atrasada a divulgação (já foi publicado por outros colegas e amigos em outros meios de comunicação), vale ressaltar o comentário da Física Maria Emília.
"Em contraste total com aquele concurso publicado em seu blog sobre a vaga de físico de radioterapia ganhando menos de R$2.000,00, neste concurso (edital em anexo), atualmente aberto no Estado do Maranhão, o maior salário dentre os profissionais de nível superior- mesmo em proporção às horas trabalhadas -  é o do Físico (detalhe: área radiodiagnóstico!) - R$ 7.774,00 / 40 horas semana. 
http://www.pciconcursos.com.br/concurso/ebserh-empresa-brasileira-de-servicos-hospitalares-ma-1386-vagas

Claro, só não é maior que dos médicos cujo concurso está em um edital separado e a carga horária é 24h/semana para um salário de R$ 6495,00!)
E se houver possibilidade de pagamento de periculosidade e isalubridade o salário do físico torna-se maior - inclusive - do que o salário dos engeheiros (também edital a parte - R$7.774,00 / 40 horas semana)!
Animador, não?!" 
 
fonte: Fís. Maria Emília

II Seminário sobre Radônio no Brasil - 19 a 23 de maio de 2014



Prezados Colegas;


Estamos enviando o folder de divulgação do 20 Seminário sobre radônio no Brasil, que será realizado em Poços de Caldas no período de 19 a 23 de maio de 2014.

Solicitamos a gentileza de divulgação em sua instuição. Solicitamos que envei listagem de email de pesquisadores potenciais participantes do evento.


Obs.  A página www.sbpr.org.br/radonio.asp será configurada em breve. Portanto a comunicação poderá ser feita no email radonio@sbpr.org.br




Nivaldo Carlos da Silva


 Comissão Organizadora
 

Residência em Física Médica - Edital 2013

Prezados Colegas, solicitei ao Prof. Dr. Marcelo Freitas, a autorização da divulgação deste e-mail de extrema importância. Divulguem para que possamos multiplicá-lo nas instituições. Não disponibilizei o e-mail do Professor, mas encaminhem as dúvidas para blogdefisicamedica@gmail.com que todas elas serão redirecionadas.

"Caros Colegas,
Gostaria de contar com a colaboração de vocês na divulgação do Edital nº28/2013 para concessão de bolsas nos Programas de Residência Multiprofissional e em Área Profissional da Saúde, seja para AMPLIAÇÃO e/ou para NOVOS programas. Conforme Ofício 92 do Ministério da Saúde (MS) ao Ministério da Educação (MEC), fica garantida pela Nota Técnica 82/2013 a concessão de bolsas para Programas de Residência em Física Médica por meio do Edital nº28/2013.

Conforme Edital, a data limite para submissão dos projetos é de 30/09/2013. No caso da Física Médica, recomenda-se a submissão dos projetos na área temática (1) - Apoio Diagnóstico e Terapêutico, na qual a ABFM passará a ter um representante na respectiva Câmara Técnica. Apesar das particularidades da área de Física Médica, é importante que os projetos atendam ao maior número de diretrizes para elaboração de projetos constantes no Edital, incluso o modelo proposto pelo MEC, e enviem a maior parte da documentação exigida.

Se houver problemas para cadastro do projeto no sistema eletrônico (SIGRESIDENCIA), enviar em papel pelo correio para ambos Ministérios:

Ministério da Saúde
Secretaria de Gestão do Trabalho e da Educação na Saúde
Departamento de Gestão da Educação na Saúde
Esplanada dos Ministérios, bloco G, Edifício Sede - sala 725 - CEP 70058-900 - Brasília/DF

Ministério da Educação
Equipe de Residência Multiprofissional em Saúde
Departamento da CGHURS/ SESU/MEC
Esplanada dos ministérios ,Bloco L, Edifício sede,3ª andar sala 301
CEP: 70047-900

Para ajudar na estruturação dos projetos, encaminho links com vários documentos:
Edital 28/2013 - https://www.dropbox.com/s/86szajtxcog1pfo/Edital28_Residencia_2013.pdf
Ofício 92 Física Médica - Nota Técnica 82/2013 - https://www.dropbox.com/s/c5my6q9t5pvedhk/Of%C3%ADcio%20n%C2%BA%20092%20-%20Fisica%20m%C3%A9dica.pdf
Modelo Projeto MEC - https://www.dropbox.com/s/8elrus9044g5jd7/modelo_projeto.pdf
IAEA Radioterapia - https://www.dropbox.com/s/bepljz9evvs7947/Radioterapia%20Training%20TCS-37_web.pdf
IAEA Medicina Nuclear - https://www.dropbox.com/s/1onw0573iiceo56/Nuclear%20Medicine_Training_TCS-50_web.pdf
IAEA Radiologia - https://www.dropbox.com/s/412e0jjeepiekxy/Radiology_training_TCS-47_web.pdf

Qualquer dúvida, vamos mantendo contato.

Saudações,
Marcelo Freitas"

sexta-feira, 23 de agosto de 2013

PET/CT: Fatores que afetam o SUV

Físicos Médicos especialistas e entusiastas em Medicina Nuclear. Disponibilizei uma parte de uma aula baseada no artigo mencionado anteriormente no Blog, sobre fatores que afetam o SUV em exames PET/CT. Espero que auxilie na tomada de decisão sobre os controles de qualidade, cross-calibration, sincronismo dos relógios (radiofarmácia e equipamento), etc. Qualquer dúvida ou discussão estou à disposição. Por favor, caso queiram complementar, será muito importante para todos nós.

terça-feira, 20 de agosto de 2013

Workshop RADIOFÁRMACOS no Instituto de Radioproteção e Dosimetria

O Curso de Pós-Graduação em Proteção Radiológica e Segurança de Fontes Radioativas do IRD em conjunto com a Agência Internacional (AIEA) está promovendo um Workshop sobre Radiofármacos que acontecerá dia 30 de Agosto de 2013. A programação pode ser conferida no link a seguir:

Assuntos abordados:
  • Produção de radiofármacos no IPEN pelo Dr João Alberto Osso Júnior, gerente de pesquisa, desenvolvimento e inovação do Centro de Radiofarmácia do IPEN-CNEN/SP
  • Aplicações de radiofármacos na Medicina pelo Dr. Michel Pontes Carneiro, Chefe da Seção de Medicina Nuclear do INCA
  • Produção de radiofármacos no IEN pelo Dr. Miguel Ângelo Valle Bastos, Chefe da Divisão de Radiofármacos do IEN
  • Garantia da Qualidade para Medições de Radioatividade na Medicina Nuclear pelo Dr Akira Iwahara , Pesquisador do SEMRA/IRD
  • Controle de Qualidade de Marcação dos radiofármacos pelo Dr. Augusto Bodim – Radiofarmacêutico do HFAG.
Se tiverem dúvidas e curiosidades sobre esses assuntos, esses são os profissionais que podem esclarecer!

Imagem do ano em PET/CT - Ge Discovery PET/CT 690

fonte: Medical Physics

SNMMI 'Image of the Year' captured on GE's PET/CT technology

MILWAUKEE, 12 August 2013 – GE Healthcare announced today that its Discovery* PET/CT 690 and PET VCAR 2.0 were used by Professor Patrick Flamen of the Institut Jules Bordet in Brussels in capturing the Society of Nuclear Medicine and Molecular Imaging 2013 “Image of the Year.”

Professor Flamen’s winning scan illustrated the effectiveness of radium-223 dichloride in treating bone metastases in breast cancer patients with bone-dominant disease. It was selected as the winning image from more than 2,000 studies.

According to SNMMI, it “chooses an image that exemplifies the most cutting-edge nuclear medicine or molecular imaging research today and that demonstrates the ability of molecular imaging to detect, diagnose and treat disease and help select the most appropriate therapy.”

“Congratulations to Professor. Flamen on this stunning image demonstrating the power of molecular imaging,” said Steve Gray, president and CEO of GE Healthcare’s Molecular Imaging business. “The Institut Jules Bordet continues to be at the forefront of using this technology and GE Healthcare’s Discovery PET/CT 690 is excellent for the image quality and speed desired in these procedures.”

“At the Institut Bordet, we aim to provide excellence in both clinical and research activities and we are grateful to the SNMMI for this great recognition,” said Professor Flamen. “GE has been a longtime collaborator in providing great equipment, great applications, and great support, allowing us to achieve outstanding clinical throughput with more than 5,000 PET/CT studies per year on our GE Discovery PET/CT 690.”

Institut Jules Bordet, a GE PET/CT European reference center, has showcased its PET/CT imaging best practices to nuclear medicine physicians from around the world. Professor Flamen has supported the development of GE PET VCAR, an exceptional multi-modality and multi-exam comparison application to evaluate lesion metabolic activity over time.

The GE Discovery PET/CT 690 is specially designed for speed, efficiency, and PET quantification accuracy. From short exam times through optimized sensitivity system design and comprehensive imaging protocols, the Discovery PET/CT 690 is the first platform focusing on quantification accuracy without compromises by providing intelligent PET and CT iterative reconstruction, respiratory motion management solutions, and integrated PET calibration technologies. PET VCAR 2.0 is the latest visualization and analytical monitoring solution featuring both PERCIST and EORTC standards helping physician in assessing disease progression or response to therapy.

“This is also a great example of demonstrating the benefit of PET/CT in treatment monitoring,” said Gray. “GE Healthcare is committed in providing technologies, such as our exclusive Q.Suite offering, designed to improve PET quantitative consistency and help contribute to personalized oncology care. This helps to give doctors the ability to assess biological changes in a patient during a course of treatment, allowing them to quickly and accurately modify treatment regimens.”

* Trademark of the General Electric Company

GE Healthcare provides transformational medical technologies and services to meet the demand for increased access, enhanced quality and more affordable healthcare around the world. GE (NYSE: GE) works on things that matter - great people and technologies taking on tough challenges. From medical imaging, software & IT, patient monitoring and diagnostics to drug discovery, biopharmaceutical manufacturing technologies and performance improvement solutions, GE Healthcare helps medical professionals deliver great healthcare to their patients.

segunda-feira, 19 de agosto de 2013

Game show discute o futuro da Física Médica - Medical Physics

source: Medical Physics 


Aug 19, 2013

Game show gauges the future of medical physics

What does the future have in store for medical physics? To answer this question, one could employ analysts to perform in-depth studies of potential markets and promising technologies, or perhaps send out detailed surveys to key players in the medical physics community. Alternatively, you could organize a TV game show style symposium at the AAPM annual meeting, and simply ask the audience what they think.

This latter approach formed the basis of the Physics Pheud!, an intriguing conference session in which attendees got to share their opinions on a series of strategic questions covering the science, education and professional practice of medical physics. Devised byMarc KesslerJeffrey Siewerdsen and Kristy Brock, the event attracted a peak audience of more than 350 delegates.

The game comprised four main rounds of questions, based around the themes: "The AAPM Annual Meeting", "Technology", "The Phuture" and "Medical Phyzix". Each question had four possible answers, and attendees indicated their responses using audience participation units. Meanwhile, two on-stage teams – the "Which Hazles", captained by AAPM President John Hazle, and the "Wizards of Ezz", captained by AAPM Chair of the Board Gary Ezzell – competed to win points by correctly guessing the most popular responses.

The possible answers to each question were loosely based on the replies expected from four caricatured "virtual" characters: the Scientist, the Clinician, the Vendor and the Robot. These virtual characters also competed among themselves, earning points whenever the majority chose their particular response.

Hosted by the ebullient Kessler, and refereed by AAPM President-Elect John Bayouth, the session kicked off with beach balls flying and the team captains strutting their way down the aisle to blasting rock themes. "From the starting music, the audience could tell this was something different," said Siewerdsen. "They really seemed to get it, and they had fun."

Ask the audience

Fun aside, there were some serious questions to be answered. The first round, for example, tackled issues surrounding the AAPM annual meeting itself, with audience members citing access to the latest scientific research as the most valuable aspect of the meeting, and picking the 8.00 a.m. education sessions as their favourite session type. The meeting's biggest shortfall, meanwhile, was the lack of time available to attend the large number of sessions.

Round two examined developments in medical physics technology. When asked about the future of MRI for radiotherapy guidance, the most popular reply was that it will be "applicable to a broad range of treatment sites" (the Clinician's reply), closely followed by "excellent for a few certain treatment sites" (from the Scientist). On gauging the audience's thoughts on proton therapy, over two-thirds of respondents said that "it needs clinical trials demonstrating improved outcomes" (again from the Clinician).

Some of the audience choices proved somewhat unexpected. In the future-gazing session, for example, the answer to the question "In 30 years, radiation therapy will be:" was almost equally split between "the same, but with much better tools" (the Vendor's answer) and "secondary to cellular/molecular therapy" (the Clinician), with the latter slightly edging a win.

"That sort of statistical dead heat suggests something of the two hemispheres of medical physics that seem to be at play right now," explained Siewerdsen. "One focused on the professional and practical issues of high-quality day-to-day clinical care, and the other looking to scientific research to advance the field and the fight against disease."

Perhaps the biggest surprise came in the final round, with a question asking why the audience became medical physicists. The response "to earn a good salary in a stable job" outscored "to advance the scientific field" by more than two to one.

"It was not a scientific or statistically unbiased poll, of course, but it was fascinating to see the results in real time," said Siewerdsen. "With upwards of 120 responses to each question, we were able to measure the pulse of the audience fairly well. We even distributed extra audience response units to make sure respondents were reasonably well distributed across the different demographics of meeting attendee."

And the winner is...

At the end of the four rounds, and a deciding round entitled the "Phinal Pheud!", the game was won by the "Which Hazles", who scored a come-from-behind victory by correctly matching the audiences thoughts on the area of greatest importance to the future of medical physics. The most popular response was "ground-breaking scientific research", narrowly beating "safe, effective clinical practice".

Among the virtual characters, the Clinician scored the most points, closely followed by the Scientist. "It's clear that medical physics is a highly varied field and that medical physicists are a highly varied group," Siewerdsen concluded. "The game suggested that medical physicists are somewhat equal parts scientist, clinician and robot – the last of whom was in many ways the strongest character, a machine built for critical thinking – in what one can only hope is a healthy mix."

And would they repeat the event? "I would love to do something like this again," said Kessler. "Especially now that (more) people realize that having fun and discussing serious issues are not orthogonal activities and can even be synergistic!" Siewerdsen agreed. "Absolutely," he toldmedicalphysicsweb. "How often do you get to play 20-questions with 350 of your smartest friends?"

The Physics Pheud! drew in around 350 attendees

quarta-feira, 14 de agosto de 2013

Qual é o limiar entre o aceitável e o vergonhoso para os salários em Física Médica?

Prezados Físicos Médicos,

Recentemente o Físico Médico Aristides, conselheiro da ABFM, levantou uma questão que tem sido recorrente na profissão: a desvalorização do Físico Médico em algumas instituições. Hoje, temos uma estimativas de fatos isolados no RJ e em PE, onde o físico médico recebe menos de R$ 2000 reais para atuar em radioterapia, medicina nuclear e radiodiagnóstico, sob o regime de 20-40h semanais. Um concurso recente :
Lançou o seguinte edital e peço que reparem na área em destaque que o profissional de Física Médica em radioterapia recebe um salário de R$ 1287,00 reais. 
O Prof. Dr. Eder Rezende Moraes, da USP de Ribeirão Preto, realizou, recentemente, uma avaliação sobre as áreas de concentração de atuação dos egressos do Curso de Física Médica da USP e os salários respectivos (preservando a privacidade dos participantes). Esta avaliação permitiu observar como o Físico está se colocando profissionalmente e a distribuição nas diversas áreas de atuação. O grande viés da pesquisa é que a adesão foi parcial (e apenas USP-RP). 

Com o propósito de estimar o panorama atual, criei uma planilha similar a elaborada pelo Prof. Eder, para entendermos e discutirmos a atuação e salários dos Físicos Médicos do país. No futuro estes dados poderão ser utilizados para encontramos uma linha de base, caso seja aplicável.

Por favor, preencham apenas uma vez esta planilha, caso seja apenas 1 área de atuação. Há a possibilidade do Físico ser "híbrido", e neste caso, peço que preencham mais de uma vez com as diferentes áreas de atuação. 


Com a velocidade de divulgação das redes sociais e a colaboração de TODOS, acredito que em 2 semanas teremos TODOS os resultados publicados aqui no Blog sobre esta pesquisa. Conto com o auxílio de todos para divulgação e participação.


PS: Em breve o Prof. Eder divulgará os resultados dos salários atribuídos a cada uma das áreas de atuação e espero compartilhar no Blog como uma referência adicional.


Curso de Ressonância Magnética - Florianópolis/SC


segunda-feira, 12 de agosto de 2013

"In vivo proton range verification: a review" - Phys. Med. Biol

 
Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.